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The Internet exposes us to cyberthreats attacking information, services and the Internet infrastructure itself. Such attacks are typically
detected in a reactive fashion. The downside of this approach is that alerts of an attack is issued as it is happening. In this paper we
advocate that the security community could benefit by complementing traditional reactive solutions with a proactive threat detection
approach, as this would enable us to provide early warnings by analyzing and detecting threat indicators in actively collected data. By
describing three use cases from the DNS domain, we highlight the strengths and limitations of proactive threat detection and discuss
how we could integrate those with existing solutions.
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1 INTRODUCTION

The Internet was born as an open, decentralized and scalable infrastructure supporting the visionary dream of an
interconnected world of data, information and services. Never like in the last decade we have witnessed a booming
expansion of the Internet in terms of infrastructure (e.g. available bandwidth), services (e.g. online social networks,
online streaming but also online banking, health care, to mention some), and user generated content. The Internet is
considered a means for ensuring human rights, such as freedom of speech and expression, and a structural way for
educating people on democracy [4]. While the debate is raging whether the Internet should be called a “utility” by
virtue of being a fundamental human right, the Internet runs the risk of becoming our biggest liability.

While the benefits of an interconnected society are immediately clear to everybody, it has recently became more
and more evident, even to laypeople, that the Internet exposes us to cyberthreats attacking information, services and
even the Internet infrastructure itself (e.g. attacks against the Domain Name System). Chief examples are (Distributed)
Denial of Services attacks (DDoS), an old threat that has recently taken new shapes and proportions (e.g. the attacks
against the hosting company OVH (2016, 1Tbps) [20], or the attack against the service and DNS provider Dyn [11]); but
also ever more advanced phishing attacks (e.g. CEO fraud [16]), advanced spam campaigns (e.g. snowshoe spam [22])
and other forms of insidious activities.

When a cyberthreat makes its appearance on the Internet, a mitigation strategy follows right after. The rise of DDoS
attacks, for example, has paved the way to a new market for DDoS protection systems, i.e. appliances and services
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aiming at stopping malicious traffic from hindering a certain service [redacted-due-to-anonymization]. In practice, there
exists a plethora of mechanisms to protect against cyberthreats (e.g. firewalls, blacklists, ACL, IDS, DDoS protection
services etc.). What all these solutions have in common, however, is that they are inherently reactive. In other words:
they only come into play when an attack is already ongoing.

In this paper, we investigate the possibility of addressing cyberthreats in a different, yet possibly complementary
way. We argue that a shift to a proactive form of threat detection, in which we are able to provide indicators that an
attack is in the making, might be beneficial for enhancing security.

The rationale for this research is that sophisticated attacks are not anymore a matter of running a script, but they
require careful preparation. For example, attack phases need to be staged and additional infrastructure needs to set up.
In preparing an attack, attackers expose characteristics of their infrastructure that can be used as threat indicators. Our
intuition tells us that if we are successful in identifying these threat indicators, we also have a chance to act on this
information before the threat morphs into an actual attack. An example that we will investigate in more detail later
is registering a domain name with an anomalously high number of A and MX records to be used in snowshoe spam
campaigns. In the window between crafting such a domain and performing an attack, a fundamental piece of the attack
infrastructure is exposed and vulnerable, providing us with a chance to perform threat detection in a proactive manner.

The remainder of this paper is organized as follows. In Sec. 2 we will reason about what is needed for the idea of
proactive threat detection to be feasible. In Sec. 3 through 5 we will present three case studies, while in Sec. 6 we discuss
about the strengths and limitation of our approach. We finally conclude the paper with the related work (Sec. 7) and the
conclusions (Sec. 8).

2 ENABLING PROACTIVE THREAT DETECTION

The main difference between reactive and proactive threat detection is in that the second aims at detecting indicators
of an attack before the actual attack takes place. To enable a proactive approach, two main aspects are key: data and
domain knowledge.

In our experience, proactive threat detection is best supported by using active measurements. Data sources in reactive
threat detection is typically passive – sensors within the network collecting metrics upon which triggers may fire. A
text-book example in this respect would be an Intrusion Detection System. In active measurements, on the contrary,
rather than passively collecting what a sensor observes, one requests the necessary data directly. Active measurements
require a seed, which is dependent on the context of the measurement. For example, in the case of an active Domain
Name System (DNS) measurement, the seed could be zone files. Examples of large-scale active scanning projects are,
among others, Shodan2 and the ANT censuses of the Internet Address Space [10]. These projects actively probe the
entire IPv4 address space (large scale) for open ports, in the case of Shodan, or for testing Internet connectivity, in
the case of ANT census. The first advantage of an active measurement is that, since one has control on what data is
requested, we can ensure a relatively high degree of completeness. A second advantage is that the measurement can
be repeated at a regular interval of time, thus building a longitudinal view of the phenomenon that is investigated. In
proactive threat detection, therefore, large-scale and longitudinal measurements play a major role.

When dealing with large-scale, longitudinal data sets, we have learned that the amount of data is at times of such a
proportion that finding how to characterize a specific threat indicator becomes like finding the proverbial needle in the

2https://www.shodan.io/
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Fig. 1. High level overview of our approach

haystack. We argue therefore that domain knowledge about the preparation steps related to the attack we are trying to
predict is fundamental.

Our research focusses on using DNS for proactive security. We have access to a large-scale active DNS measurement
dataset, from the OpenINTEL project [23]. This dataset consists of daily snapshots of around 65% of the global DNS
name space since March 2015. For every domain in the measurement dataset responses to ‘A’, ‘AAAA’, ‘NS’ and ‘MX’
queries are available, among others.

Additionally, in our research we frequently use blacklists as our ground truth. We realize that blacklists are rarely
perfect and blacklist operators rarely reveal their method of obtaining information. This may mean that blacklist
operators create their blacklist in either a passive or even in an active way, or that they have their own predictive
registration methods of malicious activity. In any case, blacklists are nowadays considered the de-facto standard to
verify malicious behavior (e.g. in spam filters) and we therefore adopted them in our validation.

In Sec. 3 through Sec. 5 we discuss use cases where this dataset plays a central role, highlighting how threat indicators
for each use cases can be identified and characterizes. The use cases will also help us reasoning about the strengths and
limitations of a proactive approach.

3 SNOWSHOE SPAM

In snowshoe spam3 the sending of spam is spread out over a large number of hosts, each one used to send a relatively
small amount of emails, to avoid detection by spam reputation systems (blacklists). We have also observed that snowshoe
spammers want to appear as legitimate as possible, by adopting email best practices. An example of such a best practice
is Sender Policy Framework (SPF), a technique to ensure only authorized email servers can send email for specific
domains. However, SPF requires spammers to register and configure a legitimate DNS domain, and to create a DNS
record for every host that should be able to send email for that domain. This enables us to proactively search for
domains related to snowshoe spam in the active DNS dataset used in our research.

3.1 Methodology and dataset

Fig. 1 shows a high-level overview of our approach. From left to right, it displays four parts (A)-(D) that together makes
up our detection process. In addition to this, a fifth part, (E), is shown in the gray rectangle, which represents the
training of the machine learning classifier that our detection relies on.

3This section is a summary of a previously published paper of the authors [22]
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At a high-level, our method for detection does the following. Every day, we collect the most recent snapshot from
our dataset (A). Since we expect that snowshoe spam domains will have a large number of A or MX records and large (in
terms of number of characters) TXT records, we then perform a filtering step to only focus on the long tail of the domain
size distribution (B). At this point we have extracted candidate domains. We then use a machine learning classifier (C)
to perform a binary prediction of domains to blacklist, which are then added to our Real-time Blackhole List (RBL) (D).

For the explanation on how we have build and trained the classifier we refer to the original paper [22].
For validation purposes, all domains on the RBL are then checked against existing public blacklists (Table 1). We

monitor these blacklists to identify the first moment in time in which one of our candidate snowshoe domains are
blacklisted. This allows us to quantify the time advantage of our detection method.

We have performed daily detection from May 24, 2017 till September 5, 2017. This section discusses the details on
the datasets used during the daily detections. The basis of these detections is a dataset of that day containing domains
exceeding the 99.9, 99, 98 or 97 percentile. On average there are about 2.7K domains in the dataset of the 99.9 percentile.
This figure grows to 57.3K domain names in the dataset of the 97 percentile.

3.2 Results

Before we dive into the results of our method, we verify that there is a clear difference between the positives (spam)
and negatives (ham). For this goal we have made a dataset from April 2017. We have selected domains above the 99
percentile, since this percentile threshold gave a clear distinction between positives and negatives. We filtered out the
positives and matched it with an equal number of negatives from the Alexa top million. This resulted in a dataset with
both 136441 positives and negatives. We visualize the difference by plotting the Cumulative Distribution Function (CDF)
for two most distinctive features, the number of A and MX records per domain (Fig. 2). This analysis indicates that at the
90th percentile for the A record distribution, spam domains have on average 16.2 records more than regular domains.
Similarly, at the 98th percentile of the MX record distribution, spam domains have 77 records more than regular domains,
indicating that there is a clear distinction between benign domains and domains crafted for snowshoe spam.

During our measurement period, our detection method marked 35,004 domains as snowshoe spam domains. 32,677 of
these domains (93.35%) appeared on an existing blacklist at some point during the measurement period. This indicates
that our method is highly effective at detecting snowshoe spam domains. The remaining 2,327 domains (6.65%) are
either false positives or they have not yet appeared in one of the existing blacklists. This second case occurs when our
detection mechanism reports snowshoe domains (much) earlier than blacklists.

Table 2 lists how many domains per day on average are in the long tail dataset (per percentile), how many are
detected by the classifier and how many are newly added to the RBL.

Table 1. The Used Blacklists and Their Purpose

Name Domain IP address

multi.uribl.com ✓

dbl.spamhaus.org ✓

rbl.rbldns.ru ✓

zen.spamhaus.org ✓
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Fig. 2. CDF of two features in the test data set

Table 2. Per-day Averages of the Datasets and Detections

Percentile Avg. domains in dataset Avg. domains detected Avg. added to the RBL

99.9 2728.07 243.96 18.99
99.0 19179.59 3228.75 149.37
98.0 37202.64 5226.31 205.72
97.0 57250.48 6805.55 239.37
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Δt ≥ 2 days
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(b) Early detection of domains

We finally analyze if our approach has a time advantage over regular, existing blacklists, such as the Spamhaus
blacklist. By time advantage we mean the window between detection by our method and the time at which the same
domains appears on one of the existing blacklists we considered (see Table 1).

In the context of early detection, we distinguish three categories of domains. Fig. 3a depicts these categories, and
they are described in more detail below:

(a) domains that are already on a blacklist at the time of detection, or have only a day difference. There can be a one
day difference since the daily data is of the previous day, while the blacklist query happens in real-time.

(b) domains with a detection difference of at least two days or more.
(c) domains that – during the measurement period – have not (yet) been blacklisted.

Fig. 3b shows how many domains have been detected, with how much of a time difference before being blacklisted.
The y-axis is log-scaled to make the spread more visible.

In total 35,004 domains have been detected. The majority of domains by far falls in the first category (a), 30,705
domains (87.72%) appear on a blacklist less than two days after detection via our method. In the second category (b),
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Fig. 4. Lifetime of a DDoS domain

where our detection is at least two days in advance, contains 1,972 domains (5.63%). Of these 1,972 domains, 1,154
domains (3.30%) were detected at least a week in advance, 1,105 domains (3.16%) were detected more than two weeks in
advance, and 971 domains (2.77%) were detected at least a month in advance. There are even 949 domains (2.71%) which
were detected at least 60 days before they appeared on a blacklist. The maximum time difference we observed so far is
104 days. 2,327 domains (6.65%) fall in the last category (c), and have not been blacklisted during the measurement
period. While these numbers may seem small, percentage-wise, it should be noted that the impact of this approach is in
reality quite valuable, since this is typically the type of email that makes it past an email filter.

3.3 Conclusion Snowshoe Spam Use Case

In this use case we investigate how domains crafted for sending snowshoe spam can be detected using active DNS
measurements. 93.25% of domains we have detected have appeared on an existing blacklist at some point during the
measurement period. Additionally, we have shown that our method is able to detect domains from 2 to 104 days in
advance, when compared to regular blacklists, such as the Spamhaus blacklist.

4 DDOS DOMAINS

DNS amplification is a form of Distributed Denial of Service (DDoS) attack in which an attacker will prompt the DNS to
answer fake queries seemingly generated by the target (spoofing). The attacker will typically send a query for which he
knows the response will be very large, to maximize the amplification effect. The attacker can do this in two ways. The
first option is to use an existing domain for which the attacker knows the answer to certain queries to be large, for
example a domain that is DNSSEC-signed [redacted-due-to-anonymization]. The second option is to, instead, craft a
domain under their control, populated in such fashion to guarantee a large response.

In this use case, we focus on attackers that choose the second option. We present here an example of the behavior
over time of a domain crafted and misused for DDoS attacks, and the outline of a possible proactive detection strategy.
Albeit anecdotal, we believe that this example points to an valuable research direction for the approach we are outlining
in this paper. We plan to investigate this further as future work.

We expect domains crafted for DDoS to stand out because an attacker has an incentive to maximize the response size
for a domain to achieve high amplification. Since the attacker needs to rely on the DNS to achieve high amplification,
Manuscript submitted to ACM
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our intuition tells us that these type of domains are likely to be visible in the active DNS dataset we use. Fig. 4 shows an
example of a domain which shows a behavior compatible with the one described above. In particular, Fig. 4 shows that,
while the domain was registered well in advance, the number of records and the estimated amplification size (as carried,
for example, in an query of type ANY) was modest until March 2015. Starting from March 2015, we observe that the
domain has been inflated, specifically by adding more than 200 A records, reaching an estimated ANY size of 3500 bytes.
This coincides with the time windows in which the domain is used in DDoS attack (based on data from the AmpPot
project [15]). After the attack window ends, in September 2015, the domain deflates. We believe this growth pattern is
indicative of domains crafted for DDoS attacks. However, it remains future work to investigate if our hypothesis holds.

A possible proactive approach to detect these kind of domains at scale could comprise the following steps:

(1) Filter domains with more than average number of records, or domains with a longer than average TXT record.
(2) Gather the records for the past X days.
(3) Determine the trend lines in terms of growth (number of records, TXT length).
(4) Predict the size of the domain for the next Y days.
(5) Flag the domain if the predicted size is above a certain threshold.

Future work consists of evaluating if this method is effective and what proper values for X and Y are.
This case study strongly suggest that the estimated amplification size for a domain and its trend over time could be

used as treat indicators for Amplification DDoS attacks. Additionally, the behavior of the example domain we presented
seems to indicate that a certain window of time exists between the moment of domain registration and the moment
when it is misused. Estimating and exploiting this time window would effectively allow us to flag a crafted domain
before it is misused.

5 COMBOSQUATTING DOMAINS

Domain squatting is typically seen in phishing attacks. Attackers mimic every aspect of their target web page to trick a
victim into entering credentials, for example. This mimicking includes the domain name. Since attackers cannot use the
original domain name, they need to come up with a name closely resembling the original one. Types of domain squatting
are listed in Table 3. Our focus in this use case lies with combosquatting, a type of squatting were the trademark
identifying the target is left intact and another word is either prepended or appended, resulting in a domain name
which appears to be owned by the trademark holder but actually leads to a malicious endpoint. However, the practice
of prepending or appending word to trademarks is by no means restricted to malicious use. For example, the domain
‘youtubego.com’ contains the trademark YouTube, but is not malicious. For this reason, we do not base our approach on
domain name analysis, but we instead focus on active DNS data. The additional DNS data could be used to increase the
certainty of a prediction of maliciousness.

We started this work with a similar approach as in the snowshoe spam use case. We used a machine learning classifier
to distinguish between regular domains and combosquatting domains. Originally we aimed for a generic detection
model, one where a list of trademarks is not required, thus relieving us from the need to keep such a list up to date, and
the need to know each brand name. Our training dataset consisted of an equal number of positives (combosquat domains)
and negatives (benign domain). A domain was considered a combosquat domain when it contained a trademark and
was listed on a blacklist. This ensured that only combosquat domains with malicious intent were present in our training
data, to avoid false positives (e.g. the previously mentioned ‘youtubego.com’) to become part of the training set. The
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Table 3. Types of domain squatting using the domain ‘utwente.nl’ as example (adapted from [13])

Type Example

Typosquatting utwent.nl
Combosquatting utwente-login.nl
Bitsquatting utwenpe.nl
Homophone-Based squatting utwentie.nl
Homograph-Based squatting utvvente.nl
Abbrevsquatting ut.nl

(a) First peak at 2 days (b) Second peak after a year

Fig. 5. Difference between detection and blacklisting in days

negatives were selected from the Alexa top million list, under the assumption that it is unlikely for a combosquat
domain to gain enough popularity to be listed in Alexa.

However, the classifications of a classifier trained on such data was disappointing. The main distinguishing feature
used by our classifier, a Gaussian Naive Bayes classifier, was the length of the domain name. This is understandable from
the perspective that a combosquat is naturally longer than the target it is squatting. Yet, this does not automatically
mean that a long domain is a combosquat domain. We therefore modified our dataset by adding a feature which specified
if the domain under consideration contained a trademark from a predefined list of trademarks. This list of trademarks
was based on manual inspection of the Alexa top 500 list. Ambiguous domain names are excluded, as well as short
names (less than four characters).

Due to this change in the classifier we were able to detect combosquat domains, as each of the detected domains
contained a trademark. We analyzed the performance of our detection method by comparing them to historic blacklist
data. This allowed us to go back in time to observe when the domain was registered, when we would have detected it
and when the domain was blacklisted. Analyzing the difference between detection and blacklisting resulted in two
major peaks, visible in Fig. 5a and Fig. 5b. The first was at two days after detection. And the second peak at 372 days
after detection. The first peak suggests that these domains were actively used and therefore quickly blacklisted as there
was enough evidence. The second peak might be explained when we observe the ICANN Domain life cycle diagram [12].
Manuscript submitted to ACM
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Assuming a domain with an initial expiration date of one year from registration, the 372 days correspond with the
five day “Add Grace Period” and the 2 days of detection time. This could mean that the domain switched ownership
after a year and it is then used in malicious practice. We have performed active HTTP measurements against these
combosquat domains. These domains typically go through the following stages:

(1) The domain is registered/parked. At this stage the domain is not actively misused.
(2) First signs of activity. A Web server is setup and a folder containing malicious content is uploaded.
(3) The combosquat domain is up and running with malicious intentions.
(4) Either the domain is blacklisted or serves an error page.

Additionally to the combosquat domains which Kintis et al. [13] have observed – domains with a long lifetime – we
have also observed a class of domains which have a lifetime of only a couple of hours in which they go through theses
stages.

In this use case, while we succeeded in detecting combosquat domains, we also observe that the time advantage is
not as large as we have seen in the snowshoe spam use case. This is due to two factors. First, there seems to be a fast
reaction time from the moment a domain with a name suggesting combosquatting is registered (and therefore it appear
in our database), and the moment this is put on a blacklist. Secondly, since combosquatting domains might aim at a fast
completion of their lifecycle, we cannot exclude that a number of domains complete their lifecycle in less than a day,
after which the domain remains registered but is no longer used. Depending on when the domain registration happens,
our dataset might take notice of the new suspicious domains with up to a day delay, at which point the combosquat
campaign is likely to have ended. This suggests that the measurement frequency of our dataset, once per day, is too low
to effectively combat combosquat domains.

6 DISCUSSION

Sec. 3 through 5 presented three examples of the application of a proactive threat detection approach. We have chosen
these use cases because they allow us to reason about both the strengths and limitations of proactive threat detection.

The use cases highlights that the major strengths of a proactive threat detection approach is twofold. First, proactive
threat detection has the potential to identify threat indicator earlier than the attack takes place, thus allowing security
experts to make the most of a time advantage that can be up to months. We strongly believe that this time advantage is
key to deploy more targeted security measures that can overall improve the security of the Internet. Secondly, since
proactive threat detection strongly depend on large-scale, longitudinal data and it is not linked to a specific target but
to the attacker infrastructure, the scope in terms of security impact of a proactive approach is larger than a reactive
system. By acting on the attacker infrastructure, we have therefore a larger security benefit.

A proactive approach does not come without risks, however. First and foremost, it is important to keep in mind that
proactive threat detection is in essence a prediction approach, since rather than reacting when an attack is happening
(certainty), we use threat indicators to warn that an attack might happen in the future. There is therefore no hard proof,
unlike the case of passive measurements, of malicious activity related to a certain domain, nor a clear indication of
how much time will pass from the prediction to the attack. While validation based, for example, on later appearance of
malicious domains in blacklists helps in building confidence that a proactive threat detection approach works (see for
example the snowshoe spam use case in Sec. 3), we cannot of course ensure that a prediction will result in an attack. The
conversion rate, meaning how many predicted threats convert to attacks, is therefore a good indication of the likelihood
that an attack will strike, but it gives, by design, no certainty of imminent attacks.
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Fig. 7. Architectural example

The traditional confusion matrix typically used to determine if a classification approach (Fig. 6a) is effective with
respect to a certain ground truth no longer applies as is due to the time component that is introduced. The domains our
approach predicts as malicious may, at the time of the prediction, be a true positive or a false positive. With normal
classification problems these labels are static. However, since we are dealing with a prediction, in our case these may
change over time. Once an attack strikes, triggering an update in the ground truth, what we flagged as a false positive
becomes a true positive. The same applies to the domains we do not mark as malicious. At prediction time these are
either false negatives or true negatives. If an attack is witnessed by the ground truth a true negative becomes a false
negative. We depict this phenomenon in Fig. 6b.

The traditional false positives and true negatives in a proactive setting are therefore uncertain and possibly dynamic.
The reasons for this phenomenon are the conversion rate and the possible time delay. Ideally, an effective proactive
approach will almost never trigger the conversion from true negatives to false negatives. The conversion from false
positives to true positives, on the other hand, are desired since they improve the overall performance of the system.

In practice, this means that proactive threat detection entails a trade-off between the risk of acting on a prediction
that might not convert to an attack, and the risk of not acting on it and at a later moment to deal with a miss. We argue
that this trade-off is application and situation specific, as it might involve different risk factors.

With this in mind we suggest that proactive threat detection should be used as an enhancement to the current
reactive methods (shown in Fig. 7a). For example, the reports from the proactive methods could lower the reaction
Manuscript submitted to ACM
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thresholds in reactive methods, as shown in Fig. 7b where an alert is triggered after five packets coming from a certain
domain instead of the normal trigger of, say, ten packets.

In addition, it is also important to keep in mind how the available data impact the applicability of proactive methods.
In Sec. 2 we have already stressed the importance of having large-scale, longitudinal data for this type of research. We
argue here that the type of data will also influence which type of threats we are able to detect. In the case of combosquat
domains, for example, having the platform behind our dataset measure more frequent than once per day is unfeasible
due to the number of domains that need to be measured. However, proactive threat detection could be used as a filter
for these measurements. Suppose the combosquat detection model is fed a list of newly registered domains from a zone
file, the model filters out candidates which conform the combosquat definition. At that point measurements with high
frequencies, every hour or every minute, can be started.

We do realize that developing proactive threat detection strategies and the related blacklists can possibly affect the
behavior of the attackers. From the perspective of the attacker, an effective proactive RBL may mean a higher number
of ‘unusable’ domains for their attack. As a consequence they might change their preparation tactics, for example by
publishing their domain just before performing the attack. What we believe will not change, however, is the need
attackers have to rely on established infrastructure (e.g., the DNS) to support their activities. This would mean that the
proposed methodology might become less effective with respect to the detection time advantage, but it would still be
able to complement reactive approaches.

7 RELATEDWORK

Proactive security is closely related to threat detection, which, in itself, is a large field of research. Because this paper
draws its inspiration from the DNS, we focus on research using the DNS for threat detection. We first introduce literature
on passive and active DNS measurements. Then we focus on how DNS misuse can be detected and finally we focus on
proactive threat detection.

DNS data can be acquired in a passive or active manner. The most well known method for passive DNS measurements
is passive DNS (pDNS) [27]. pDNS is mostly used to capture DNS traffic between a recursive caching name server
(resolver) and the authoritative name servers, thus ensuring the privacy of the end-users. Notable examples of large-scale
pDNS deployment are Farsight Security’s DNSDB4 and the pDNS infrastructure operated by CERT.at5. The drawback
of pDNS data is that it is inherently reactive, since a domain becomes part of this dataset only if a user accesses
it. In contrast, active measurements work by sending targeted queries to the DNS. There are several examples of
active DNS measurements in the literature. Schomp et al. [21] use active scans to investigate the client-side DNS
infrastructure. Kountoras et al. [14] proposes a DNS data collection platform for the study of short-lived disposable
domains. Rijswijk-Deij et al. [24, 25] used active DNS measurements to study aspects of the DNSSEC protocol.

Several contribution in the literature focus on detecting malicious activities using DNS measurements. Fukuda et
al. [6] uses reverse DNS queries to detect network-wide activity, among which large scans at times related to malicious
activity (e.g. Heartbleed and SSH scanning). For their work, the authors use passive DNS data collected from DNS
servers at the root or at country-level. Consequently their work, while valuable, cannot be used in a proactive manner.
DNS queries are commonly used in the detection of botnets [3, 17, 26, 28]. Also in this case, the common ground of
these papers is the use of passive DNS traces, making them unable to predict new command and control domains.

4https://www.dnsdb.info/
5The Austrian National CERT team, http://www.cert.at/index_en.html
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An important topic of research, in context of threat detection using the DNS, is malicious domain detection, i.e.
focusing specifically on the characteristics of the domain name. The EXPOSURE system [1], for example, uses features
from a combination of domain characteristics and passively obtained DNS answers to classify domains based on the
likelihood of being malicious. As before, the passive collection of DNS answers limits this approach to a reactive
response to emerging threats. On the contrary, the paper by He et al. [9] is closer to the approach we propose in this
paper. The authors aim at predicting, at registration time, if a domain will be used maliciously or not. They largely base
this prediction on features derived from the analyzed name. This works supports our argument that the data in the
DNS is a valuable source of information for proactively identify malicious activities in the making.

We argue that using proactive threat detection techniques and blacklists allows us to react quicker to emerging
threats posed to us from the Internet. In line with our proposed approach, several works in literature focus on predicting
undiscovered malicious activity. Felegyhazi et al. [5] use the notion of perpetrators registering malicious domains in
bulk to predict additional malicious domains. Using name server properties and registration information, the authors
cluster domains into confirmed bad domains, unknown domains and suspected bad domains. Fukushima et al. [7] takes
a bad neighborhoods approach [19], namely focusing on the idea that malicious activities tend to cluster together in the
network space. The authors cluster domains based on their CIDR /24 prefix and registrar. Through this information,
the authors calculate a score that increases as the number of IP addresses from a specific prefix are listed. The authors
assume that new domains matching a high scoring prefix and registrar combination are malicious too. Lee et al. [18]
pose the idea of tracking phishing domains through their redirections and forms. In their paper the authors propose to
submit URLs resulting from the tracking automatically to PhishTank to develop a proactive blacklist. For the initial seed
the authors took 3,916 phishing URLs from PhishTank and discovered an additional 2,345 phishing domains. Hao et
al. [8] developed PREDATOR, a proactive system for recognition and elimination of domain abuse at time of registration.
This contribution is an additional example of how proactive security allows for a faster response against abuse. Finally,
the paper by Chen et al. [2] comes closest to our proposal. The authors argue that cybersecurity can capitalize on
the Germination Period, that is “the time lag between hacker communities discussing software flaw types and flaws
actually being exploited” [2]. They consequently propose to crawl hacker forums for 0-days and vulnerabilities to feed
a proactive security system. Similarly to our proposal, the authors data gathering methodology is active, but while they
focus on vulnerabilities and 0-days described in textual sources (fora and public databases), we focus on DNS data.

8 CONCLUSION

In this paper we argue that proactive threat detection has the potential to become a novel and complementary approach
to traditional reactive security. We presented two case studies, i.e. reflection and amplification DDoS attacks, and
snowshoe spam, for which evidence shows that we can gain a time advantage on the actual attack and a larger coverage.
And yet, we also argue that proactive threat detection needs to be handled with care. First, the appropriate type of data
is a must for enabling the observation of threats, as we show in the use case of combosquatting, for which our dataset
is not able to provide the necessary information for a proactive approach. Secondly, the actual conversion rate from
threats to attacks, combined with the predictive nature of our methods, need to be evaluated carefully depending to the
application. Based on this observations we advocate the use of proactive threat detection in combination with reactive
detection methods, e.g. by lowering thresholds for suspicious activity.

We aim to extend this work by studying other areas of attacks. In our case, our main data source will remain the
DNS, an area in which we plan to extend our active DNS measurement with data from passive DNS monitors to study
how active and passive measurements can optimally be combined for threat detection.
Manuscript submitted to ACM
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